Bayesian Wavelet-based Curve Classification via Discriminant Analysis with Markov Random Tree Priors.
نویسندگان
چکیده
Discriminant analysis is an effective tool for the classification of experimental units into groups. When the number of variables is much larger than the number of observations it is necessary to include a dimension reduction procedure into the inferential process. Here we present a typical example from chemometrics that deals with the classification of different types of food into species via near infrared spectroscopy. We take a nonparametric approach by modeling the functional predictors via wavelet transforms and then apply discriminant analysis in the wavelet domain. We consider a Bayesian conjugate normal discriminant model, either linear or quadratic, that avoids independence assumptions among the wavelet coefficients. We introduce latent binary indicators for the selection of the discriminatory wavelet coefficients and propose prior formulations that use Markov random tree (MRT) priors to map scale-location connections among wavelets coefficients. We conduct posterior inference via MCMC methods, we show performances on our case study on food authenticity and compare results to several other procedures..
منابع مشابه
Discriminant Analysis and Adaptive Wavelet Feature Selection for Statistical Object Detection
We utilize the discriminant analysis to select wavelet features for efficient object detection. The analysis applies to the Bayesian classifier and is extended to the case of boosting. Based on the error analysis under the Bayesian decision rule, we reduce the number of coefficients involved in detection to lower the computational cost. Using a Hidden Markov Tree (HMT) model to describe the pat...
متن کاملVariable selection for discriminant analysis with Markov random field priors for the analysis of microarray data
MOTIVATION Discriminant analysis is an effective tool for the classification of experimental units into groups. Here, we consider the typical problem of classifying subjects according to phenotypes via gene expression data and propose a method that incorporates variable selection into the inferential procedure, for the identification of the important biomarkers. To achieve this goal, we build u...
متن کاملMultiscale Statistical Image Models and Bayesian Methods
Multiscale statistical signal and image models resulted in major advances in many signal processing disciplines. This paper focuses on Bayesian image denoising. We discuss two important problems in specifying priors for image wavelet coefficients. The first problem is the characterization of the marginal subband statistics. Different existing models include highly kurtotic heavy-tailed distribu...
متن کاملA Wavelet-Based Image Denoising Technique Using Spatial Priors
We propose a new wavelet-based method for image denoising that applies the Bayesian framework, using prior knowledge about the spatial clustering of the wavelet coefficients. Local spatial interactions of the wavelet coefficients are modeled by adopting a Markov Random Field model. An iterative updating technique known as iterated conditional modes (ICM) is applied to estimate the binary masks ...
متن کاملAuthor gender identification from text using Bayesian Random Forest
Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistica Sinica
دوره 22 2 شماره
صفحات -
تاریخ انتشار 2012